THIS REPORT MAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DoD DIRECTIVE 5200.20 ANMD

HO RESTRICTIONS ARE IMPOSED uPON
TS USE AND DISCLOSURE,

DISTRIBUTION STATERENT A

APPROYED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,






’sz‘mr;

33

PP

ey,

A,
. o
Pl

= CE
Sagy

o
(]

N

3

v E Ly

- IR e b 3
=

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

gjl[g;;;b}i.‘}iccument is the property of the United States Government. It is furnished for the du-
.59 the contract and shall be returned when no longer required, or upon recall by ASTIA

ollowing address: Armed Services Technical Inf :xmation Agency,
Dayton 2, Ohio.

ﬁy:nt S8ervice Center, Knott Building,

~WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA

E‘Z,@?OR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
*%?ENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS
ASIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE

fENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
INGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY

/ON OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER

R CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE

',jLL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

’

f




fase NAVY DEPARTMENT
" THE DAVID W. TAYLOR MODEL BASIN

WASHINGTON 7, D.C.

\"&f\l; APPROXIMATE METHOD OF OBTAINING STRESS
IN A PROPELLER BLADE

by
William B. Morgan

October 1954 Report 919




Errata for Report 919

Page
iv Reads VA Number of blades
Should read 2 Number of blades
4 The lower arrow indicating y /2 should be at the lower heavy line instead of the
z-axis :
Mean Line
X
8 Reads Ty =Ty = mmemee- ) sin 0.06387 §
RC
Should read PO ) sin 2.06387 s
RC
8 Reads y3=( )cos 0083875 ...
RC
8 Should read y;=( ) cos 0.06387 s ,
RC
12 Reads y=0 )
Should read y =~ )
15 Reads MQ, = =erememeee
Should read Mob = semmmeseo--
17 Reads = 4,958

Should read = 4.958 ftt



AN APPROXIMATE METHOD OF OBTAINING STRESS IN A PROPELLER BLADE

William B. Morgan

October 1954 Report 919



i

TABLE OF CONTENTS

ABSTRACT v TRt
INTROBUCTION oottt s s saiar st e sbnare s s s sb s n e ba s e sermaa s e enanesaeesasssane
STRESSES FROM BEAM THEORY iooireeriiiiiniinmriti ettt e e

QUANTITIES ARISING FROM THE GEGMETRY OF THE SECTION...ccccccconunnene
EPH Thickness Form, Circular Arc Mean Line .....cccoviviiiniiiniininniininionnn,
NACA 16 Thickness Form, @ = 0.8 Mean Line..........ccoevuiivimniniins vvivenninnnenn
NACA 65A Thickness Form, a = 0.8 (Modified) Mean Line ......ccccoceeivieninnnnn.

SUMMARY oot s s
APPENDIX - SAMPLE STRESS CALCULATION cooreieieiiiiiiiin e

REFERENCES ittt areraressssse s centisransssssssasssssssssssssonssessssnsasssvons

11
12

12

14

18



it
NOTATION

Area of section
Coefficient of area
Coefficient of I

0
Coefficient of Iy

0

Lift coefficient

Thrust coefficient for nonviscous flow
Diameter of -propeller

Maximum ordinate of mean line (camber line)

Moment of inertia about an axis parallel to the z-axis and passing through the center of
gravity

Moment of inertia about the z-axis

Moment of inertia about an axis parallel to the y-axis and passing through the center of
gravity

Moment of inertia about the y-axis
Length of blade section

Bending moment from torque per blade

Bending moment from thrust per blade

Bending moment about abscissa with reference to the center of gravity
Bending moment about ordinate with reference to the center of gravity
Pitch at any radius

Torque per blade

Torque for nonviscous flow

Radius of propeller

Radius of mean line

Variable radius

Radius of any propeller blade section

Length of mean line

Maximum thickness of section

Thrust per blade

Thrust for nonviscous flow

Speed of advance of propeller



iv

Distance along mean line
Abscissa of center of gravity with reference to midpoint of section

Abscissa of nose with reference to axis through center of gravity

Abscissa of tail with reference to axis through center of gravity

Abscissa of point of maximum thickness with reference to axis through center of gravity
Ordinate of the section measured perpendicular to the mean line

Ordinate of center of gravity with reference to nose-tail line

Ordinate of nose with reference to axis through the center of gravity

Ordinate of back with reference to axis through the center of gravity

Ordinate of point of maximum thickness with reference to axis through the center of
gravity

Number of blades

. Hydrodynamic pitch angle

Drag-lift ratio
Angle of arc of the mean line
Density

P/D
Tan™1 (-—L) = Corrected hydrodynamic pitch angle
ne



ABSTRACT

An approximate method of obtaining stress in a propeller blade from
simple beam theory is presented. The method is designed to minimize the
work required for calculating the geometric properties of the blade section.
An example is given with this method applied to a modern thickness form.

INTRODUCTION

The stress calculation usually applied to ship propellers was developed by D.W. Taylor.!
The basic assumptions are that the simple beam theory is applicable to a propeller blade and
that thrust and torque depend linearly on the radius. Usually the maximum stress is determined
for only one section of the blade close tothe hub. The thickness of the sections is then
assumed to vary linearly with the distan ce from the hub.

As to the first assumption, a closer approximation to the stresses can be obtained if
the propeller blade is considered as a cantilever plate? rather than as a simple beam. How-
ever, the time required for determining the stresses of a cantilever plate appears to be ex-
cessive for the present application. Therefore, the assumption of the simple beam theory is
retained in the following consideration. As to the dependence of thrust and torque on the
radius, the circulation theory, developed since Taylor’s work, makes possible the calculation
of thrust and torque distributions on a propeller blade. Assuming these distributions to be

known, the bending moments and stresses at any section can be calculated; thus the minimum
thickness of a section at any radius may be determined.

The problem then becomes one of obtaining the different geometric properties of the
blade sections. Muckle3 has developed a simple method of obtaining the center of gravity
and moments of inertia for ogival sections. This method erables the designer to obtain
minimum thickness for these sections wi thout numerical integration for the geometric proper-
ties of the section. It is important that the blade thickness be kept at a minimum for efficien-
cy and cavitation considerations; therefore, there is a need for a method of obtaining the
geometric properties of sections of any shape quickly and accurately. In principle, these
properties can be derived by means of numerical integration; however, this is time consuming.

An approximate method is developed in this report for determining the stress in a propel-
ler blade and an example is given of its use. A method for determining the geometric proper-
ties of a blade section (similar to that given in Reference 3) is given for the TMB EPH thick-
ness form superimposed on several mean lines. By introducing correction factors, this has
been applied to other thickness forms in use today, i.e., NACA 16 and NACA 65A superim-
posed on the same mean lines.

1Ret'erences are listed on page 18.



STRESSES FROM BEAM THEORY

The stresses in a propeller blade are caused by thrust, torque, and centrifugal force.
The most important stresses are the bending stresses due to the thrust and torque. Bending
stress due to centrifugal force requires consideration when the blades are raked. The other
stresses, that is, shear caused by thrust and torque and tension caused by centrifugal force,
are usually negligible.

For this particular development, only the bending stresses caused by thrust and torque
will be considered (Figure 1). For the determination of stress caused by centrifugal force
see References 1 and 3. \

Assuming that the thrust and torque distribution(d T, /dr and d @, /dr) on the propeller
blade are known, the bending moment at radius r, caused by the thrust is given as:

a7,
MTb = 'fo (r - 'O)E—df

and that by the torque as:

R [r-r)\ dQ .
= 0) Xby,
MQb r({ ( r ) dr r

where B is the radius of the propeller and r is a variable radius.

The bending moments are resolved into two moments: M, about an axis parallel to the
nose-tail line of the section and the other My perpendicular to this line. Both of these axes
z, and y, pass through the center of gravity (centroid) of the blade section (Figure 2). When
' the pitch angle ¢ and the moments MTb and
y M 0, ¥ known, the bending moments about

the z,- and y,-axes are given as follows:
dTb

M"o = MTb cos ¢ + MQb sin ¢

/ # My =M, sing - Mo cos ¢

dob The positive sense of each of these moments
is indicated in Figure 2.
It 7 % and l"o are the moments of inertia
about the z,-and y -axes, the stresses in the

y blade are given by the following relationships:

Figure 1 - Forces on a Blade Section



Yo
~— T4 Myo
—r 13
y
4 e
¥
Y2 ce Y, ] %
* = P S——— S SRS SRS SR SSm—— )
N— Nose - Tail
X2 X | Line
Yo
Figure 2 - Geometric Properties of a Blade Section
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A positive stress denotes tension and a negative stress denotes compression.

As shown in Figure 2, z,, ¢,, and z, are abscissas of the nose, tail, and point of
maximum thickness, respectively. Likewise, Y¥1» ¥ 8nd y, are ordinates of the nose, tail,
and point of maximum thickness. It should be noted that the z- and y-coordinates must be
used with their proper signs in order to obtain the correct signs for the stresses from the
above formulas,

QUANTITIES ARISING FROM THE GEOMETRY OF THE SECTION

Once the bending moments are derived, the problem becomes one of obtaining the geo-
metric properties of the blade sections. These properties are evaluated by solving the follow-
ing integrals between their proper limits in which the z-axis is the nose-tail line and the

s —mp— e i e




Figure 3 - Coordinates of Blade Section

y-axis is a line perpendicular to and passing through the midpoint of the nose-tail line (

ure 3).

Area
A= [[dyde

Horizontal distance to center of gravity

- Ie dyda
A

Vertical distance to center of gravity

[y dydx
y -

Moment of inertia about o-axis

Loy = JI? dyde

Moment of inertia about y-axis
Iy, = [ &% dyde

These integrals are evalutated for several section forms.

Fig-



TABLE 1

Offsets for TMB EPH Sections

|
T

X2 !12_ x/1 y_’/_g
t t
0 0 0.500 0.4946
0.005 0.0756 | 0.550 0.4830
0.010 0.1064 | 0.600 0.4647
0.020 0.1498 | 0.650 0.4399
0.040 0.2092 | 0.700 0.4085
0.070 0.2717 | 0.750 0.3705
0.100 0.3185 | 0.800 0.3260
0.150 0.3774 | 0.850 0.2749
0.200 0.4204 | 0.9500 0.2170
0.250 0.4522 | 0.930 0.1778
0.300 0.4750 | 0.950 0.1480
0.350 0.4902 | 0.97C 0.1129
0.400 0.4983 { 0.990 0.0642
0.43613; 0.5000 | 1.000 0
0.450 0.4997
Nose:  0=x71=0.4361302

1 2 2/9\2
(1- X7 )+4(Y/2) -1
0.4361302 t

Body: 0.4361302=x 72=0.8722604

g

Tail:

(14

X/l
0.4361302

2 Y
l) +2(y—t/g-

0.8722604=x71=1

ol

The radius of the nose is 0.5732 tz/l, the radius of the tail 0.2027 t2/l

1-x%1
0.3083906

)-1
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EPH - THICKNESS FORM, CIRCULAR ARC MEAN LINE

The usual method of approach is to solve the preceding integrals by the use of
Simpson’s Rule. A direct solution can be made if the section chosen can be expressed
mathematically. The TMB EPH thickness form (see Table 1) is formed of parts of an ellipse,
a parabola, and a hyperbola; therefore, it can be expressed mathematically. Likewise, a
circular arc mean line can be represented by a simple mathematical expression. For this
reason, the foregoing integrals were solved using the EPH section in combination with a cir-

cular arc mean line.
The method of solution was first to transform the formulas both for the three parts of

the EPH section and for the geometric properties into polar coordinates r and 6 (Figure 3).
Thus, using polar coordinates, the formulas are expressed as follows, where y /2 is
the ordinate of the section measured perpendicularly to the mean line:

0, R.+y72) 6

2
A= f I rdrd6 = [ y'R 46 (1]
6, R,~y"2) 6,
6, (R+y'72) 6, 2
2 1y
12 sin 9 drd R2 sin 0 ( —)do
T fol f(Rc ~772) - ofl ’ 2 B
A A
(2] ’
|
jzl?.cz sin?9 y‘de :
=0, , when ¢/1=0.21 and /1 =0.05
: A
2 Ro+y/2)
[ f rlr cos 6 - (k, ~f)] drdd
0y Ry
- 3
y 4 (3]
2 R +y'/2 2
- | £ e cos 0 - (B, - 1)1 drde 14]
6, R, ~y72)
, Re+y/2) 2
.f f rsin? ¢ drdg = f R3 sin%6 y* ( + 1Y )da
0, (R.=y/2) 6, 4 p2
(5]

. .2
v

R3 sin2@ y’dg, when ¢/1 0.21 and /1 =0.05

D= D

1



, Within the range: 0,06387 2 <6=0.5 2
R, E,

RO RZ20?
[ ] ’ t A by
= 0.18613 + 0,12774 ~&-. e~
d 0.43613‘/ 8613 + s 82 (6]

TSP S WO

Within the range: =0.37226 3~ < 6= 0.06387 2.

S
k.

R0 RZ
vy’ =2.62868 t(0.37634 +0.12774 __6 - 292 ) [7]
8

o e b ch 4 s o G

Within the range: - 0.5 3 <6< - 0.87226 <

(4

£
Rc

| R 0 3202
= 5583 7 £ __¢_

€
]
4
B
i
A
i
4
i

In these equations, B, is the radius, f is the maximum height, and s is the length of
the mean line and ! is the length of the nose-tail line.

The next step involves suBstituting Equations {6], (7], and [8] into Equations [1], [2],
(3], [4], and [5]. It will be noted that when these substitutions are made, integrands of the
form sin "9 \/f(6) and cos "9/f(6) are obtained. An approximate solution for these integrals
can be obtained by expanding sin 6 and ~~ 3 4. Assuming sin = § ~ 63/6 and
cos 6 =1-62/2 + 9*/24, a very close approximation will be obtained since the camber ratio
f/1 is normally less than 0,05. For this value of f/I, sin @ and cos 6 are correct to four places.

This integration is performed separately for each of the three parts of the blade section.

By adding the resuits of these separate integrations, the geometric properties of the whole
section are obtained ns follows:

A=0,746 8¢

Z=0.027 & + 0.00528 ~=—

R2
2
7=1-0.02565> +0.06 %
. k, k,

I, =0.04487 s £3 + 0,08075 9_;31 + 0,001625 £2¢°
c R2

. (]

3
+0.746 stf2 — 0,04468 24 ., 0,00188 £°¢ g
Rc R 2 g

(4



s
.. =0.04489 83¢ - 0,012948 8¢
Yy R 2

¢

For use in the stress formula, the moments of inertia must be taken about the center of
gravity and 2,, 2,, 2, ¥;, ¥,, 8nd y; must be obtained from & and ¥ (Figure 2). Thus the
following equations result:

A =0.746 8¢

z, = 0.5! - 0,027s - 0.00528 "3/33

zz-zl-l

2=, - 0.5+ (0.5¢ + R,y sin 0.00887 8
Rc

82 _ 82 _
Yy = 0.025GF 0.060 7 f

(4 ¢
Y=

Y3 =(0.5¢+R,) cos.‘l&%}”ﬂ_ﬁ+f—kc +¥,

c

242
I, =1I,, -Ag*=0.04487 ¢2 + 0.00391 2%
0 Rcz

2 4 4
- 0.00845 21 +0.00139 2= - 0.00269 £~ | & ¢
E, Rcz Rcz

2
’7 =l,-4 22 =| 0.04415 ~ 0.01298 $— - 0.000021 i 83t
° R2 R4

(4 ©c

Since from geometry

8= él- (4 V1 + 4(f/1)2 —1) ! (for small cambers),

- 1+ 4(f/0)?2
[y

and noting that ¢ = (t/l)l and f = (f/1)!, the equations can be written in terms of the section
length, thickness ratio, and camber ratio.

These equations are cumbersome, but theit use can be simplified by limiting the thick-
ness ratio to the maximum value of 0,21 and the camber ratio to 0.05. The equations are
then evaluated for a number of different thickness and camber ratios. By plotting the resulting
values, the formulas may then be reduced to the following forms:
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Figure 4 « Curve for Obtaining Area of a Blade Section

A=(at/l)1? a from Figure 4

2, = (0.47326 - 0.028 f/1)!

z, =a:1-l

2
z, =2, ~ 0.4361 7 + 0.17 (%) !
yy = - (0.114 ¢/1 + 0.79) (f/1) 1
¥=¥
yy=0.5¢+0.984f+y

x

ly0 = (c t/l) 1* c from Figure 6

1 o " [ (f/1)% + 0.04487 (¢/1)31 1% b from Figure 5
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Figure 6 - Curve for Obtaining Moment of Inertia (Iyo) of Blade Section

The quantities obtained for the EPH, circular arc section have been numerically com-
pared with the respective quantities for the EPH thickness form combined with a NACA
a = 1,0 and @ = 0.8 mean line. Within the limits of accuracy of integration, the different mean
lines had no effect on the numerical results obtained.

The appendix gives an example of the use of the above equations,

NACA 16 THICKNESS FORM, a=0.8 MEAN LINE

The NACA 16 thickness form* has an elliptical nose similar to the EPH section but
with a thinner tail. Using this thickness form with a NACA @ = (.8 mean line, the geometric
properties were obtained numerically for various thickness and camber ratios. From these
results, correction factors were determined for the formulas developed previously, Thus, the

equations become:

A = 0.986 (a ¢t/l) 1% a from Figure 4

@, = (0.4838 ~ 0,026 f/2) 1

T, =1, - ‘
o= - 0054

¥y, == (0.113¢/1 + 0.782) (/%) 1
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. Y224
Y3 = (058 + 1) +y,

lx0 = 0.9925 [b6(f/1)% + 0.04487(¢/1)3 114 b from Figure §

’70 = 0.948 (c t/1)i* c from Figure 6

When the quantities obtained for this section (NACA 16, a = 0.8) are compared numeri-
cally with those obtained for NACA 18, circular arc and a = 1.0 sections, it can be shown
-that the different mean lines have no effect on the numerical results. :

. NACA 65A THICKNESS FORM, & =0.8 (MODIFIED) MEAN LINE.

: This section is a modified form of the NACA 65 section. A mean line, NACA a = 0.8
" (modified), was designed for this form.5 The NACA 65A thickness form is desirable for ship
,pgopelle_ts."‘since the nose of the section is more blurt than an ellipse, and the tail is thicker
 then that.of the NACA .66 section. ' '
Using the same method as followed with the NACA 16, a = 0.8 section, the formulas
for the geometric properties are:

A =0.903 (a t/1) 12  a from Figure 4
@, = (0.4467 - 0,026 /7)1

z, =@, -1

f 2
zau2, - 0.41 + 0.26(-1—) !

y, = - (0.115 ¢/1 + 0.798) (f/1) 1
Va=¥,

Y3 =0.5¢+0.96f+ Y,

lxo = 0.864 [b (f/2)2% + 0.04487 (¢/1)3)1* b from Figure 5

lyo = 0.789 (¢ t/1) ¥* c from Figure 6

As with the EPH and NACA 16 sections, the various mean lines have little effect on

. .the numerical results,

SUMMARY

1. It has been assumed that the simple beam theory can be applied to a propeller blade.
Certain approximations can also be made to facilitate integration when determining the
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geometric properties of the section,

2. The formulas for the geometric properties of the EPH section are obtained in simplified
. form by limiting the thickness ratio to 0.21 and the camber ratio to 0.05. These formulas
apply to the EPH section when used with the circular arc mean line. These same formulas
may also be used with the mean lines NACA a = 1.0 and ¢ = 0.8 with sufficiently accurate
results.

3. Formulas for use with the NACA 16 and NACA 65A thickness forms are obtained by
applying correction factors to the formulas for the EPH section. The resulting equations are
applicable when these sections are used in conjunction with the circular arc, NACA a = 1.0,
NACA a = 0.8, or NACA a = 0,8 (modified) mean lines.

4. If desired, correction factors may be obtained for a number of other sections by a meth-
od similar to that used here. ‘
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APPENDIX
SAMPLE STRESS CALCULATION

The following calculations apply to a propeller blade with EPH sections and circular
arc mean lines. It will be assumed that the dgistributions of the thrust coefficient (dC Ti)/d‘”'
lift coefficient ¢; , and hydrodynamic pitch angle 8, are known from propeller theory. The
particulars for the propeller are assumed as follows:

Diameter = 20 ft

Speed of advance = 50 fps
Number of blades = 6

Length of section = §.0 ft
Camber ratio = 0,013

Thickness ratio = 0,18

Pitch at 0.2R = 26.12 ft

Pitch angle at 0.2R = 64.31 deg
Density/2 = p/2 = 1 slug/ft3

aCp,
/R —i er tan B,
de

0.2 0.2 | 0222 | 1982
0.3 | 0310 | 00266 | 1305
0.4 0.533 | 0242 | 0.963
0.5 0.732 | 0194 | 0.754
0.6 0.850 | 054 | 0.612
0.7 0.876 | 0123 | 0.519
0.8 0.787 | 0099 | 0432
0.9 0.559 0.077 | 0372
1.0 0 0 0.324

The moments of thrust and torque will be obtained from the following derivations and
by the use of Simpson’s Rule:
For the moment of thrust MTb

[
aT; -5 RVl ac,
3

1- ¢tan 8,
aT, = Bi 41, e30.008

L

dT, ='-;-1e2ﬂva2 Li1- ¢ wn gy dcy,
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Introducing the nondimensional radius z = #/R, one obtains:

P
dH 7, ....2.33,,1’,2.1.(1 - € tan B,)(2 - 2) dCy,

dC
My, -—33 vl } (2= 2g)(1- « tan ) — d

*o
For the moment of torque MQb

dQ, =r tan B;d T,

dQ,,-_(,1+ Ty )in

angy, - (_' n '0) dg,

’ o - (1+ y:

Introducing the nondimensional radius one obtains:

: )(r- 'o) tan B;4dT;

P
dMQb =_233,,V02 %(z - :co) (tan. B;+e ) dCT,

dac
Mob --;-B%Vf%x} (2 -2,)(tan B;+¢) $
0

The constant for vM,.b and M(’b is

%R%Vaz 1 . 1,809,000 £t-1b

‘Further:

/R € etan B, 1-etanpB;| (tanpB;+e¢)
0.2 |0.036 | 0.0714 0.929 2.018
0.3 | 0030 | 0.0392 0.961 1335
0.4 |0.033 | 0.0318 0.968 0.996
0.5 | 0.041 | 0.0309 0.969 0.795
0.6 | 0.052 | 0.0318 0.968 0.664
0.7 | 0.065 | 0.0337 0,966 0584
0.8 | 0.081 | 0.0350 0.965 0.513
0.9 |-0.108 | 0.0387 0.961 0.476
10 | - - -
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The following calculations are restricted to the hub radius z, = 0.2. ¥ T, for this
radius, follows from Simpson’s Rule: ' '

\, 1 2 3 4 5
‘ ‘ dCT Col. Simpson’s
| MR | —ggl-etng) | @-2) | 1«2 | Multipliers| /M)
{ 0.2 0.113 1 o 0 1 0
. 0.3 0298 - 0.1 | 0.0298 4 0.1192
! 0.4 0516 0.2 | 0.1032 2 0.2064
0.5 0.709 0.3 | 0.2127 [ 0.8508
0.6 10823 0.4 | 0.3292 2 0.6584
| 0.7 0.846 0.5 | 0.4230 4 1,6920
0.8 0.759 0.6 | 0.4554 2 0.9108
| 0.9 0.537 1 07 |0.3759 4 1.5036
. : ) N ’ 1.0 0 0.8 0 l o
. ' 3 = 5.9412

= 259,230 ft-lb

1,309,000 - 0.1 - 5.9412
MTb - 1!30:‘000 Azz - ’ 9 3

MQb is obtained by the same -method as applied to MTb.

1,309,000 « Az - X

Qs 3 = 164,950 ft-lb

The bending moments about the center of gravity are given as follows:

M’o- MTb cos ¢ + Mob sin ¢

sin ¢ = 0.901
cos ¢ = 0,434 S
M"o = 259,230 - 0.434 + 164,950 - 0.901 = 261,130 ft-lb

M’o = MTb sin ¢ ~ MQb cos ¢

= 259,280 « 0.901 ~ 164,050 - 0.434 = 161,980 ft-lb
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¢ The stress on the back of the blade at point of maximum thickness-is given by:
. _ A M-"o _ styo
,"o ”o

The distances from the center of gravity to the point of maximum thickness, and the
moments of inertia are given as follows (see page 9)

' 2
z, -(0.47325 - 0.026-{-)1 - 0.43617 + 0.17 (-{-) 4

- 0.184 ft
k ¢ i
Y3 =05¢+0.984f = 0.1145+0.79 ()1
. = 0.462 ft
. ,"o =[5 (f/1)2 + 0.04487 (¢/1)31* b from Figure 5

= [0.009(f/1)? + 0.04487(£/1)3) 14

= 0.1645 ft4

I, =(ct/l)1* =(0.04407 ¢/1)1* ¢ from Figure 6
= 4,958 ft*

The stress on the back at the point of maximum thickness is thus:

0.462 - 261,130 0.184 - 161,980
0.1645 4.980

= - 739,400 pst

. or 5135 psi compressive stress.

In like manner, the stresses at the rose and tail have been calculated and are 44,3 psi
tension and 1,179 psi tension, respectively.
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For complete propeller stress analysis, these calculations must be made at a number
of radii.
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